Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Recommender Systems with Random Walks: A Survey (1711.04101v1)

Published 11 Nov 2017 in cs.IR, cs.AI, and cs.SI

Abstract: Recommender engines have become an integral component in today's e-commerce systems. From recommending books in Amazon to finding friends in social networks such as Facebook, they have become omnipresent. Generally, recommender systems can be classified into two main categories: content based and collaborative filtering based models. Both these models build relationships between users and items to provide recommendations. Content based systems achieve this task by utilizing features extracted from the context available, whereas collaborative systems use shared interests between user-item subsets. There is another relatively unexplored approach for providing recommendations that utilizes a stochastic process named random walks. This study is a survey exploring use cases of random walks in recommender systems and an attempt at classifying them.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com