Papers
Topics
Authors
Recent
2000 character limit reached

CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution (1711.04048v1)

Published 11 Nov 2017 in cs.CV

Abstract: We propose methodologies to train highly accurate and efficient deep convolutional neural networks (CNNs) for image super resolution (SR). A cascade training approach to deep learning is proposed to improve the accuracy of the neural networks while gradually increasing the number of network layers. Next, we explore how to improve the SR efficiency by making the network slimmer. Two methodologies, the one-shot trimming and the cascade trimming, are proposed. With the cascade trimming, the network's size is gradually reduced layer by layer, without significant loss on its discriminative ability. Experiments on benchmark image datasets show that our proposed SR network achieves the state-of-the-art super resolution accuracy, while being more than 4 times faster compared to existing deep super resolution networks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.