Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton (1711.03993v3)

Published 10 Nov 2017 in cs.CC and cs.FL

Abstract: Unambiguous non-deterministic finite automata have intermediate expressive power and succinctness between deterministic and non-deterministic automata. It has been conjectured that every unambiguous non-deterministic one-way finite automaton (1UFA) recognizing some language L can be converted into a 1UFA recognizing the complement of the original language L with polynomial increase in the number of states. We disprove this conjecture by presenting a family of 1UFAs on a single-letter alphabet such that recognizing the complements of the corresponding languages requires superpolynomial increase in the number of states even for generic non-deterministic one-way finite automata. We also note that both the languages and their complements can be recognized by sweeping deterministic automata with a linear increase in the number of states.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)