Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unsupervised Learning of Geometry with Edge-aware Depth-Normal Consistency (1711.03665v1)

Published 10 Nov 2017 in cs.CV

Abstract: Learning to reconstruct depths in a single image by watching unlabeled videos via deep convolutional network (DCN) is attracting significant attention in recent years. In this paper, we introduce a surface normal representation for unsupervised depth estimation framework. Our estimated depths are constrained to be compatible with predicted normals, yielding more robust geometry results. Specifically, we formulate an edge-aware depth-normal consistency term, and solve it by constructing a depth-to-normal layer and a normal-to-depth layer inside of the DCN. The depth-to-normal layer takes estimated depths as input, and computes normal directions using cross production based on neighboring pixels. Then given the estimated normals, the normal-to-depth layer outputs a regularized depth map through local planar smoothness. Both layers are computed with awareness of edges inside the image to help address the issue of depth/normal discontinuity and preserve sharp edges. Finally, to train the network, we apply the photometric error and gradient smoothness for both depth and normal predictions. We conducted experiments on both outdoor (KITTI) and indoor (NYUv2) datasets, and show that our algorithm vastly outperforms state of the art, which demonstrates the benefits from our approach.

Citations (152)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.