Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Meta-Learning for Adaptive Hierarchical Classifier Design (1711.03512v1)

Published 9 Nov 2017 in cs.LG, cs.AI, cs.IT, math.IT, and stat.ML

Abstract: We propose a new splitting criterion for a meta-learning approach to multiclass classifier design that adaptively merges the classes into a tree-structured hierarchy of increasingly difficult binary classification problems. The classification tree is constructed from empirical estimates of the Henze-Penrose bounds on the pairwise Bayes misclassification rates that rank the binary subproblems in terms of difficulty of classification. The proposed empirical estimates of the Bayes error rate are computed from the minimal spanning tree (MST) of the samples from each pair of classes. Moreover, a meta-learning technique is presented for quantifying the one-vs-rest Bayes error rate for each individual class from a single MST on the entire dataset. Extensive simulations on benchmark datasets show that the proposed hierarchical method can often be learned much faster than competing methods, while achieving competitive accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube