Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Beetle Antennae Search without Parameter Tuning (BAS-WPT) for Multi-objective Optimization (1711.02395v1)

Published 7 Nov 2017 in cs.NE

Abstract: Beetle antennae search (BAS) is an efficient meta-heuristic algorithm inspired by foraging behaviors of beetles. This algorithm includes several parameters for tuning and the existing results are limited to solve single objective optimization. This work pushes forward the research on BAS by providing one variant that releases the tuning parameters and is able to handle multi-objective optimization. This new approach applies normalization to simplify the original algorithm and uses a penalty function to exploit infeasible solutions with low constraint violation to solve the constraint optimization problem. Extensive experimental studies are carried out and the results reveal efficacy of the proposed approach to constraint handling.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.