Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimal rates of entropy estimation over Lipschitz balls (1711.02141v4)

Published 6 Nov 2017 in math.ST, cs.IT, math.IT, stat.ME, and stat.TH

Abstract: We consider the problem of minimax estimation of the entropy of a density over Lipschitz balls. Dropping the usual assumption that the density is bounded away from zero, we obtain the minimax rates $(n\ln n){-s/(s+d)} + n{-1/2}$ for $0<s\leq 2$ for densities supported on $[0,1]d$, where $s$ is the smoothness parameter and $n$ is the number of independent samples. We generalize the results to densities with unbounded support: given an Orlicz functions $\Psi$ of rapid growth (such as the sub-exponential and sub-Gaussian classes), the minimax rates for densities with bounded $\Psi$-Orlicz norm increase to $(n\ln n){-s/(s+d)} (\Psi{-1}(n)){d(1-d/p(s+d))} + n{-1/2}$, where $p$ is the norm parameter in the Lipschitz ball. We also show that the integral-form plug-in estimators with kernel density estimates fail to achieve the minimax rates, and characterize their worst case performances over the Lipschitz ball. One of the key steps in analyzing the bias relies on a novel application of the Hardy-Littlewood maximal inequality, which also leads to a new inequality on the Fisher information that may be of independent interest.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube