Randomized Nonnegative Matrix Factorization (1711.02037v2)
Abstract: Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of `big data' has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.