Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

HPX Smart Executors (1711.01519v1)

Published 5 Nov 2017 in cs.DC, cs.AI, and cs.LG

Abstract: The performance of many parallel applications depends on loop-level parallelism. However, manually parallelizing all loops may result in degrading parallel performance, as some of them cannot scale desirably to a large number of threads. In addition, the overheads of manually tuning loop parameters might prevent an application from reaching its maximum parallel performance. We illustrate how machine learning techniques can be applied to address these challenges. In this research, we develop a framework that is able to automatically capture the static and dynamic information of a loop. Moreover, we advocate a novel method by introducing HPX smart executors for determining the execution policy, chunk size, and prefetching distance of an HPX loop to achieve higher possible performance by feeding static information captured during compilation and runtime-based dynamic information to our learning model. Our evaluated execution results show that using these smart executors can speed up the HPX execution process by around 12%-35% for the Matrix Multiplication, Stream and $2D$ Stencil benchmarks compared to setting their HPX loop's execution policy/parameters manually or using HPX auto-parallelization techniques.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.