Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Background Subtraction via Fast Robust Matrix Completion (1711.01218v1)

Published 3 Nov 2017 in cs.CV and eess.IV

Abstract: Background subtraction is the primary task of the majority of video inspection systems. The most important part of the background subtraction which is common among different algorithms is background modeling. In this regard, our paper addresses the problem of background modeling in a computationally efficient way, which is important for current eruption of "big data" processing coming from high resolution multi-channel videos. Our model is based on the assumption that background in natural images lies on a low-dimensional subspace. We formulated and solved this problem in a low-rank matrix completion framework. In modeling the background, we benefited from the in-face extended Frank-Wolfe algorithm for solving a defined convex optimization problem. We evaluated our fast robust matrix completion (fRMC) method on both background models challenge (BMC) and Stuttgart artificial background subtraction (SABS) datasets. The results were compared with the robust principle component analysis (RPCA) and low-rank robust matrix completion (RMC) methods, both solved by inexact augmented Lagrangian multiplier (IALM). The results showed faster computation, at least twice as when IALM solver is used, while having a comparable accuracy even better in some challenges, in subtracting the backgrounds in order to detect moving objects in the scene.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.