Sparse-View X-Ray CT Reconstruction Using $\ell_1$ Prior with Learned Transform (1711.00905v3)
Abstract: A major challenge in X-ray computed tomography (CT) is reducing radiation dose while maintaining high quality of reconstructed images. To reduce the radiation dose, one can reduce the number of projection views (sparse-view CT); however, it becomes difficult to achieve high-quality image reconstruction as the number of projection views decreases. Researchers have applied the concept of learning sparse representations from (high-quality) CT image dataset to the sparse-view CT reconstruction. We propose a new statistical CT reconstruction model that combines penalized weighted-least squares (PWLS) and $\ell_1$ prior with learned sparsifying transform (PWLS-ST-$\ell_1$), and a corresponding efficient algorithm based on Alternating Direction Method of Multipliers (ADMM). To moderate the difficulty of tuning ADMM parameters, we propose a new ADMM parameter selection scheme based on approximated condition numbers. We interpret the proposed model by analyzing the minimum mean square error of its ($\ell_2$-norm relaxed) image update estimator. Our results with the extended cardiac-torso (XCAT) phantom data and clinical chest data show that, for sparse-view 2D fan-beam CT and 3D axial cone-beam CT, PWLS-ST-$\ell_1$ improves the quality of reconstructed images compared to the CT reconstruction methods using edge-preserving regularizer and $\ell_2$ prior with learned ST. These results also show that, for sparse-view 2D fan-beam CT, PWLS-ST-$\ell_1$ achieves comparable or better image quality and requires much shorter runtime than PWLS-DL using a learned overcomplete dictionary. Our results with clinical chest data show that, methods using the unsupervised learned prior generalize better than a state-of-the-art deep "denoising" neural network that does not use a physical imaging model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.