Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Minimal Exploration in Structured Stochastic Bandits (1711.00400v1)

Published 1 Nov 2017 in stat.ML, cs.AI, cs.LG, and math.OC

Abstract: This paper introduces and addresses a wide class of stochastic bandit problems where the function mapping the arm to the corresponding reward exhibits some known structural properties. Most existing structures (e.g. linear, Lipschitz, unimodal, combinatorial, dueling, ...) are covered by our framework. We derive an asymptotic instance-specific regret lower bound for these problems, and develop OSSB, an algorithm whose regret matches this fundamental limit. OSSB is not based on the classical principle of "optimism in the face of uncertainty" or on Thompson sampling, and rather aims at matching the minimal exploration rates of sub-optimal arms as characterized in the derivation of the regret lower bound. We illustrate the efficiency of OSSB using numerical experiments in the case of the linear bandit problem and show that OSSB outperforms existing algorithms, including Thompson sampling.

Citations (108)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.