Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing the Approximation Error of the Fast Graph Fourier Transform (1711.00386v2)

Published 1 Nov 2017 in cs.NA

Abstract: The graph Fourier transform (GFT) is in general dense and requires O(n2) time to compute and O(n2) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.