Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Large Dimensional Study of Regularized Discriminant Analysis Classifiers (1711.00382v4)

Published 1 Nov 2017 in stat.ML

Abstract: This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.