Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear/Quadratic Programming-Based Optimal Power Flow using Linear Power Flow and Absolute Loss Approximations (1711.00317v3)

Published 1 Nov 2017 in cs.SY

Abstract: This paper presents novel methods to approximate the nonlinear AC optimal power flow (OPF) into tractable linear/quadratic programming (LP/QP) based OPF problems that can be used for power system planning and operation. We derive a linear power flow approximation and consider a convex reformulation of the power losses in the form of absolute value functions. We show four ways how to incorporate this approximation into LP/QP based OPF problems. In a comprehensive case study the usefulness of our OPF methods is analyzed and compared with an existing OPF relaxation and approximation method. As a result, the errors on voltage magnitudes and angles are reasonable, while obtaining near-optimal results for typical scenarios. We find that our methods reduce significantly the computational complexity compared to the nonlinear AC-OPF making them a good choice for planning purposes.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.