Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved Approximation Schemes for the Restricted Shortest Path Problem (1711.00284v2)

Published 1 Nov 2017 in cs.DS, cs.CC, and cs.DM

Abstract: The Restricted Shortest Path (RSP) problem, also known as the Delay-Constrained Least-Cost (DCLC) problem, is an NP-hard bicriteria optimization problem on graphs with $n$ vertices and $m$ edges. In a graph where each edge is assigned a cost and a delay, the goal is to find a min-cost path which does not exceed a delay bound. In this paper, we present improved approximation schemes for RSP on several graph classes. For planar graphs, undirected graphs with positive integer resource (= delay) values, and graphs with $m \in \Omega(n \log n)$, we obtain $(1 + \varepsilon)$-approximations in time $O(mn/\varepsilon)$. For general graphs and directed acyclic graphs, we match the results by Xue et al. (2008, [10]) and Ergun et al. (2002, [1]), respectively, but with arguably simpler algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)