Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A multitask deep learning model for real-time deployment in embedded systems (1711.00146v1)

Published 31 Oct 2017 in cs.CV and cs.LG

Abstract: We propose an approach to Multitask Learning (MTL) to make deep learning models faster and lighter for applications in which multiple tasks need to be solved simultaneously, which is particularly useful in embedded, real-time systems. We develop a multitask model for both Object Detection and Semantic Segmentation and analyze the challenges that appear during its training. Our multitask network is 1.6x faster, lighter and uses less memory than deploying the single-task models in parallel. We conclude that MTL has the potential to give superior performance in exchange of a more complex training process that introduces challenges not present in single-task models.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.