Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Stretch Factor of Hexagon-Delaunay Triangulations (1711.00068v2)

Published 31 Oct 2017 in cs.CG

Abstract: The problem of computing the exact stretch factor (i.e., the tight bound on the worst case stretch factor) of a Delaunay triangulation is one of the longstanding open problems in computational geometry. Over the years, a series of upper and lower bounds on the exact stretch factor have been obtained but the gap between them is still large. An alternative approach to solving the problem is to develop techniques for computing the exact stretch factor of ``easier'' types of Delaunay triangulations, in particular those defined using regular-polygons instead of a circle. Tight bounds exist for Delaunay triangulations defined using an equilateral triangle and a square. In this paper, we determine the exact stretch factor of Delaunay triangulations defined using a regular hexagon: It is 2. We think that the main contribution of this paper are the two techniques we have developed to compute tight upper bounds for the stretch factor of Hexagon-Delaunay triangulations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.