Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Computer Vision System to Localize and Classify Wastes on the Streets (1710.11374v1)

Published 31 Oct 2017 in cs.CV

Abstract: Littering quantification is an important step for improving cleanliness of cities. When human interpretation is too cumbersome or in some cases impossible, an objective index of cleanliness could reduce the littering by awareness actions. In this paper, we present a fully automated computer vision application for littering quantification based on images taken from the streets and sidewalks. We have employed a deep learning based framework to localize and classify different types of wastes. Since there was no waste dataset available, we built our acquisition system mounted on a vehicle. Collected images containing different types of wastes. These images are then annotated for training and benchmarking the developed system. Our results on real case scenarios show accurate detection of littering on variant backgrounds.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.