Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Image Patch Matching Using Convolutional Descriptors with Euclidean Distance (1710.11359v1)

Published 31 Oct 2017 in cs.CV

Abstract: In this work we propose a neural network based image descriptor suitable for image patch matching, which is an important task in many computer vision applications. Our approach is influenced by recent success of deep convolutional neural networks (CNNs) in object detection and classification tasks. We develop a model which maps the raw input patch to a low dimensional feature vector so that the distance between representations is small for similar patches and large otherwise. As a distance metric we utilize L2 norm, i.e. Euclidean distance, which is fast to evaluate and used in most popular hand-crafted descriptors, such as SIFT. According to the results, our approach outperforms state-of-the-art L2-based descriptors and can be considered as a direct replacement of SIFT. In addition, we conducted experiments with batch normalization and histogram equalization as a preprocessing method of the input data. The results confirm that these techniques further improve the performance of the proposed descriptor. Finally, we show promising preliminary results by appending our CNNs with recently proposed spatial transformer networks and provide a visualisation and interpretation of their impact.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.