Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nebula: F0 Estimation and Voicing Detection by Modeling the Statistical Properties of Feature Extractors

Published 31 Oct 2017 in eess.AS and cs.SD | (1710.11317v2)

Abstract: A F0 and voicing status estimation algorithm for high quality speech analysis/synthesis is proposed. This problem is approached from a different perspective that models the behavior of feature extractors under noise, instead of directly modeling speech signals. Under time-frequency locality assumptions, the joint distribution of extracted features and target F0 can be characterized by training a bank of Gaussian mixture models (GMM) on artificial data generated from Monte-Carlo simulations. The trained GMMs can then be used to generate a set of conditional distributions on the predicted F0, which are then combined and post-processed by Viterbi algorithm to give a final F0 trajectory. Evaluation on CSTR and CMU Arctic speech databases shows that the proposed method, trained on fully synthetic data, achieves lower gross error rates than state-of-the-art methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.