Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rate-optimal Meta Learning of Classification Error (1710.11315v1)

Published 31 Oct 2017 in stat.ML, cs.IT, and math.IT

Abstract: Meta learning of optimal classifier error rates allows an experimenter to empirically estimate the intrinsic ability of any estimator to discriminate between two populations, circumventing the difficult problem of estimating the optimal Bayes classifier. To this end we propose a weighted nearest neighbor (WNN) graph estimator for a tight bound on the Bayes classification error; the Henze-Penrose (HP) divergence. Similar to recently proposed HP estimators [berisha2016], the proposed estimator is non-parametric and does not require density estimation. However, unlike previous approaches the proposed estimator is rate-optimal, i.e., its mean squared estimation error (MSEE) decays to zero at the fastest possible rate of $O(1/M+1/N)$ where $M,N$ are the sample sizes of the respective populations. We illustrate the proposed WNN meta estimator for several simulated and real data sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (5)

Summary

We haven't generated a summary for this paper yet.