Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Critical Points of Neural Networks: Analytical Forms and Landscape Properties (1710.11205v1)

Published 30 Oct 2017 in stat.ML and cs.LG

Abstract: Due to the success of deep learning to solving a variety of challenging machine learning tasks, there is a rising interest in understanding loss functions for training neural networks from a theoretical aspect. Particularly, the properties of critical points and the landscape around them are of importance to determine the convergence performance of optimization algorithms. In this paper, we provide full (necessary and sufficient) characterization of the analytical forms for the critical points (as well as global minimizers) of the square loss functions for various neural networks. We show that the analytical forms of the critical points characterize the values of the corresponding loss functions as well as the necessary and sufficient conditions to achieve global minimum. Furthermore, we exploit the analytical forms of the critical points to characterize the landscape properties for the loss functions of these neural networks. One particular conclusion is that: The loss function of linear networks has no spurious local minimum, while the loss function of one-hidden-layer nonlinear networks with ReLU activation function does have local minimum that is not global minimum.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)