Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Machine Translation of Low-Resource Spoken Dialects: Strategies for Normalizing Swiss German (1710.11035v2)

Published 30 Oct 2017 in cs.CL

Abstract: The goal of this work is to design a machine translation (MT) system for a low-resource family of dialects, collectively known as Swiss German, which are widely spoken in Switzerland but seldom written. We collected a significant number of parallel written resources to start with, up to a total of about 60k words. Moreover, we identified several other promising data sources for Swiss German. Then, we designed and compared three strategies for normalizing Swiss German input in order to address the regional diversity. We found that character-based neural MT was the best solution for text normalization. In combination with phrase-based statistical MT, our solution reached 36% BLEU score when translating from the Bernese dialect. This value, however, decreases as the testing data becomes more remote from the training one, geographically and topically. These resources and normalization techniques are a first step towards full MT of Swiss German dialects.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.