Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sequence-to-Sequence ASR Optimization via Reinforcement Learning (1710.10774v2)

Published 30 Oct 2017 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Despite the success of sequence-to-sequence approaches in automatic speech recognition (ASR) systems, the models still suffer from several problems, mainly due to the mismatch between the training and inference conditions. In the sequence-to-sequence architecture, the model is trained to predict the grapheme of the current time-step given the input of speech signal and the ground-truth grapheme history of the previous time-steps. However, it remains unclear how well the model approximates real-world speech during inference. Thus, generating the whole transcription from scratch based on previous predictions is complicated and errors can propagate over time. Furthermore, the model is optimized to maximize the likelihood of training data instead of error rate evaluation metrics that actually quantify recognition quality. This paper presents an alternative strategy for training sequence-to-sequence ASR models by adopting the idea of reinforcement learning (RL). Unlike the standard training scheme with maximum likelihood estimation, our proposed approach utilizes the policy gradient algorithm. We can (1) sample the whole transcription based on the model's prediction in the training process and (2) directly optimize the model with negative Levenshtein distance as the reward. Experimental results demonstrate that we significantly improved the performance compared to a model trained only with maximum likelihood estimation.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.