Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Almost Optimal Stochastic Weighted Matching With Few Queries (1710.10592v3)

Published 29 Oct 2017 in cs.DS

Abstract: We consider the {\em stochastic matching} problem. An edge-weighted general (i.e., not necessarily bipartite) graph $G(V, E)$ is given in the input, where each edge in $E$ is {\em realized} independently with probability $p$; the realization is initially unknown, however, we are able to {\em query} the edges to determine whether they are realized. The goal is to query only a small number of edges to find a {\em realized matching} that is sufficiently close to the maximum matching among all realized edges. This problem has received a considerable attention during the past decade due to its numerous real-world applications in kidney-exchange, matchmaking services, online labor markets, and advertisements. Our main result is an {\em adaptive} algorithm that for any arbitrarily small $\epsilon > 0$, finds a $(1-\epsilon)$-approximation in expectation, by querying only $O(1)$ edges per vertex. We further show that our approach leads to a $(1/2-\epsilon)$-approximate {\em non-adaptive} algorithm that also queries only $O(1)$ edges per vertex. Prior to our work, no nontrivial approximation was known for weighted graphs using a constant per-vertex budget. The state-of-the-art adaptive (resp. non-adaptive) algorithm of Maehara and Yamaguchi [SODA 2018] achieves a $(1-\epsilon)$-approximation (resp. $(1/2-\epsilon)$-approximation) by querying up to $O(w\log{n})$ edges per vertex where $w$ denotes the maximum integer edge-weight. Our result is a substantial improvement over this bound and has an appealing message: No matter what the structure of the input graph is, one can get arbitrarily close to the optimum solution by querying only a constant number of edges per vertex. To obtain our results, we introduce novel properties of a generalization of {\em augmenting paths} to weighted matchings that may be of independent interest.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube