Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Dual Encoder Sequence to Sequence Model for Open-Domain Dialogue Modeling (1710.10520v1)

Published 28 Oct 2017 in cs.CL

Abstract: Ever since the successful application of sequence to sequence learning for neural machine translation systems, interest has surged in its applicability towards language generation in other problem domains. Recent work has investigated the use of these neural architectures towards modeling open-domain conversational dialogue, where it has been found that although these models are capable of learning a good distributional LLM, dialogue coherence is still of concern. Unlike translation, conversation is much more a one-to-many mapping from utterance to a response, and it is even more pressing that the model be aware of the preceding flow of conversation. In this paper we propose to tackle this problem by introducing previous conversational context in terms of latent representations of dialogue acts over time. We inject the latent context representations into a sequence to sequence neural network in the form of dialog acts using a second encoder to enhance the quality and the coherence of the conversations generated. The main task of this research work is to show that adding latent variables that capture discourse relations does indeed result in more coherent responses when compared to conventional sequence to sequence models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.