Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressive Time-of-Flight 3D Imaging Using Block-Structured Sensing Matrices (1710.10444v3)

Published 28 Oct 2017 in math.NA, cs.IT, and math.IT

Abstract: Spatially and temporally highly resolved depth information enables numerous applications including human-machine interaction in gaming or safety functions in the automotive industry. In this paper, we address this issue using Time-of-flight (ToF) 3D cameras which are compact devices providing highly resolved depth information. Practical restrictions often require to reduce the amount of data to be read-out and transmitted. Using standard ToF cameras, this can only be achieved by lowering the spatial or temporal resolution. To overcome such a limitation, we propose a compressive ToF camera design using block-structured sensing matrices that allows to reduce the amount of data while keeping high spatial and temporal resolution. We propose the use of efficient reconstruction algorithms based on l1-minimization and TV-regularization. The reconstruction methods are applied to data captured by a real ToF camera system and evaluated in terms of reconstruction quality and computational effort. For both, l1-minimization and TV-regularization, we use a local as well as a global reconstruction strategy. For all considered instances, global TV-regularization turns out to clearly perform best in terms of evaluation metrics including the PSNR.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube