Papers
Topics
Authors
Recent
2000 character limit reached

Investigation of Frame Alignments for GMM-based Digit-prompted Speaker Verification (1710.10436v4)

Published 28 Oct 2017 in cs.SD and eess.AS

Abstract: Frame alignments can be computed by different methods in GMM-based speaker verification. By incorporating a phonetic Gaussian mixture model (PGMM), we are able to compare the performance using alignments extracted from the deep neural networks (DNN) and the conventional hidden Markov model (HMM) in digit-prompted speaker verification. Based on the different characteristics of these two alignments, we present a novel content verification method to improve the system security without much computational overhead. Our experiments on the RSR2015 Part-3 digit-prompted task show that, the DNN based alignment performs on par with the HMM alignment. The results also demonstrate the effectiveness of the proposed Kullback-Leibler (KL) divergence based scoring to reject speech with incorrect pass-phrases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.