Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Investigation of Frame Alignments for GMM-based Digit-prompted Speaker Verification (1710.10436v4)

Published 28 Oct 2017 in cs.SD and eess.AS

Abstract: Frame alignments can be computed by different methods in GMM-based speaker verification. By incorporating a phonetic Gaussian mixture model (PGMM), we are able to compare the performance using alignments extracted from the deep neural networks (DNN) and the conventional hidden Markov model (HMM) in digit-prompted speaker verification. Based on the different characteristics of these two alignments, we present a novel content verification method to improve the system security without much computational overhead. Our experiments on the RSR2015 Part-3 digit-prompted task show that, the DNN based alignment performs on par with the HMM alignment. The results also demonstrate the effectiveness of the proposed Kullback-Leibler (KL) divergence based scoring to reject speech with incorrect pass-phrases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.