Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeroth Order Nonconvex Multi-Agent Optimization over Networks (1710.09997v3)

Published 27 Oct 2017 in math.OC and stat.ML

Abstract: In this paper, we consider distributed optimization problems over a multi-agent network, where each agent can only partially evaluate the objective function, and it is allowed to exchange messages with its immediate neighbors. Differently from all existing works on distributed optimization, our focus is given to optimizing a class of non-convex problems, and under the challenging setting where each agent can only access the zeroth-order information (i.e., the functional values) of its local functions. For different types of network topologies such as undirected connected networks or star networks, we develop efficient distributed algorithms and rigorously analyze their convergence and rate of convergence (to the set of stationary solutions). Numerical results are provided to demonstrate the efficiency of the proposed algorithms.

Citations (77)

Summary

We haven't generated a summary for this paper yet.