Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Improving Deep Learning by Inverse Square Root Linear Units (ISRLUs) (1710.09967v2)

Published 27 Oct 2017 in cs.LG

Abstract: We introduce the "inverse square root linear unit" (ISRLU) to speed up learning in deep neural networks. ISRLU has better performance than ELU but has many of the same benefits. ISRLU and ELU have similar curves and characteristics. Both have negative values, allowing them to push mean unit activation closer to zero, and bring the normal gradient closer to the unit natural gradient, ensuring a noise-robust deactivation state, lessening the over fitting risk. The significant performance advantage of ISRLU on traditional CPUs also carry over to more efficient HW implementations on HW/SW codesign for CNNs/RNNs. In experiments with TensorFlow, ISRLU leads to faster learning and better generalization than ReLU on CNNs. This work also suggests a computationally efficient variant called the "inverse square root unit" (ISRU) which can be used for RNNs. Many RNNs use either long short-term memory (LSTM) and gated recurrent units (GRU) which are implemented with tanh and sigmoid activation functions. ISRU has less com- putational complexity but still has a similar curve to tanh and sigmoid.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.