Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Early Word Learning in Situated Artificial Agents (1710.09867v2)

Published 26 Oct 2017 in cs.CL, cs.AI, and cs.NE

Abstract: Neural network-based systems can now learn to locate the referents of words and phrases in images, answer questions about visual scenes, and execute symbolic instructions as first-person actors in partially-observable worlds. To achieve this so-called grounded language learning, models must overcome challenges that infants face when learning their first words. While it is notable that models with no meaningful prior knowledge overcome these obstacles, researchers currently lack a clear understanding of how they do so, a problem that we attempt to address in this paper. For maximum control and generality, we focus on a simple neural network-based language learning agent, trained via policy-gradient methods, which can interpret single-word instructions in a simulated 3D world. Whilst the goal is not to explicitly model infant word learning, we take inspiration from experimental paradigms in developmental psychology and apply some of these to the artificial agent, exploring the conditions under which established human biases and learning effects emerge. We further propose a novel method for visualising semantic representations in the agent.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.