Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DPCA: Dimensionality Reduction for Discriminative Analytics of Multiple Large-Scale Datasets (1710.09429v1)

Published 25 Oct 2017 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Principal component analysis (PCA) has well-documented merits for data extraction and dimensionality reduction. PCA deals with a single dataset at a time, and it is challenged when it comes to analyzing multiple datasets. Yet in certain setups, one wishes to extract the most significant information of one dataset relative to other datasets. Specifically, the interest may be on identifying, namely extracting features that are specific to a single target dataset but not the others. This paper develops a novel approach for such so-termed discriminative data analysis, and establishes its optimality in the least-squares (LS) sense under suitable data modeling assumptions. The criterion reveals linear combinations of variables by maximizing the ratio of the variance of the target data to that of the remainders. The novel approach solves a generalized eigenvalue problem by performing SVD just once. Numerical tests using synthetic and real datasets showcase the merits of the proposed approach relative to its competing alternatives.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.