Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Polynomial Method Strikes Back: Tight Quantum Query Bounds via Dual Polynomials (1710.09079v3)

Published 25 Oct 2017 in quant-ph and cs.CC

Abstract: The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. Approximate degree is known to be a lower bound on quantum query complexity. We resolve or nearly resolve the approximate degree and quantum query complexities of the following basic functions: $\bullet$ $k$-distinctness: For any constant $k$, the approximate degree and quantum query complexity of $k$-distinctness is $\Omega(n{3/4-1/(2k)})$. This is nearly tight for large $k$ (Belovs, FOCS 2012). $\bullet$ Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function $[n] \to [n]$ is $\tilde{\Omega}(n{1/2})$. This proves a conjecture of Ambainis et al. (SODA 2016), and it implies the following lower bounds: $-$ $k$-junta testing: A tight $\tilde{\Omega}(k{1/2})$ lower bound, answering the main open question of Ambainis et al. (SODA 2016). $-$ Statistical Distance from Uniform: A tight $\tilde{\Omega}(n{1/2})$ lower bound, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). $-$ Shannon entropy: A tight $\tilde{\Omega}(n{1/2})$ lower bound, answering a question of Li and Wu (2017). $\bullet$ Surjectivity: The approximate degree of the Surjectivity function is $\tilde{\Omega}(n{3/4})$. The best prior lower bound was $\Omega(n{2/3})$. Our result matches an upper bound of $\tilde{O}(n{3/4})$ due to Sherstov, which we reprove using different techniques. The quantum query complexity of this function is known to be $\Theta(n)$ (Beame and Machmouchi, QIC 2012 and Sherstov, FOCS 2015). Our upper bound for Surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube