Automatic Software and Computing Hardware Co-design for Predictive Control (1710.08802v1)
Abstract: Model Predictive Control (MPC) is a computationally demanding control technique that allows dealing with multiple-input and multiple-output systems, while handling constraints in a systematic way. The necessity of solving an optimization problem at every sampling instant often (i) limits the application scope to slow dynamical systems and/or (ii) results in expensive computational hardware implementations. Traditional MPC design is based on manual tuning of software and computational hardware design parameters, which leads to suboptimal implementations. This paper proposes a framework for automating the MPC software and computational hardware co-design, while achieving the optimal trade-off between computational resource usage and controller performance. The proposed approach is based on using a multi-objective optimization algorithm, namely BiMADS. Two test studies are considered: Central Processing Unit (CPU) and Field-Programmable Gate Array (FPGA) implementations of fast gradient-based MPC. Numerical experiments show that optimization-based design outperforms Latin Hypercube Sampling (LHS), a statistical sampling-based design exploration technique.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.