Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automatic Software and Computing Hardware Co-design for Predictive Control (1710.08802v1)

Published 24 Oct 2017 in cs.SY and math.OC

Abstract: Model Predictive Control (MPC) is a computationally demanding control technique that allows dealing with multiple-input and multiple-output systems, while handling constraints in a systematic way. The necessity of solving an optimization problem at every sampling instant often (i) limits the application scope to slow dynamical systems and/or (ii) results in expensive computational hardware implementations. Traditional MPC design is based on manual tuning of software and computational hardware design parameters, which leads to suboptimal implementations. This paper proposes a framework for automating the MPC software and computational hardware co-design, while achieving the optimal trade-off between computational resource usage and controller performance. The proposed approach is based on using a multi-objective optimization algorithm, namely BiMADS. Two test studies are considered: Central Processing Unit (CPU) and Field-Programmable Gate Array (FPGA) implementations of fast gradient-based MPC. Numerical experiments show that optimization-based design outperforms Latin Hypercube Sampling (LHS), a statistical sampling-based design exploration technique.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.