Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpretable Deep Learning applied to Plant Stress Phenotyping (1710.08619v3)

Published 24 Oct 2017 in stat.ML and cs.LG

Abstract: Availability of an explainable deep learning model that can be applied to practical real world scenarios and in turn, can consistently, rapidly and accurately identify specific and minute traits in applicable fields of biological sciences, is scarce. Here we consider one such real world example viz., accurate identification, classification and quantification of biotic and abiotic stresses in crop research and production. Up until now, this has been predominantly done manually by visual inspection and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intra-rater cognitive variability. Here, we demonstrate the ability of a machine learning framework to identify and classify a diverse set of foliar stresses in the soybean plant with remarkable accuracy. We also present an explanation mechanism using gradient-weighted class activation mapping that isolates the visual symptoms used by the model to make predictions. This unsupervised identification of unique visual symptoms for each stress provides a quantitative measure of stress severity, allowing for identification, classification and quantification in one framework. The learnt model appears to be agnostic to species and make good predictions for other (non-soybean) species, demonstrating an ability of transfer learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.