Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Two-Level Classification Approach for Detecting Clickbait Posts using Text-Based Features (1710.08528v1)

Published 23 Oct 2017 in cs.SI and cs.CL

Abstract: The emergence of social media as news sources has led to the rise of clickbait posts attempting to attract users to click on article links without informing them on the actual article content. This paper presents our efforts to create a clickbait detector inspired by fake news detection algorithms, and our submission to the Clickbait Challenge 2017. The detector is based almost exclusively on text-based features taken from previous work on clickbait detection, our own work on fake post detection, and features we designed specifically for the challenge. We use a two-level classification approach, combining the outputs of 65 first-level classifiers in a second-level feature vector. We present our exploratory results with individual features and their combinations, taken from the post text and the target article title, as well as feature selection. While our own blind tests with the dataset led to an F-score of 0.63, our final evaluation in the Challenge only achieved an F-score of 0.43. We explore the possible causes of this, and lay out potential future steps to achieve more successful results.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube