Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FDD Massive MIMO: Efficient Downlink Probing and Uplink Feedback via Active Channel Sparsification (1710.07993v1)

Published 22 Oct 2017 in cs.IT and math.IT

Abstract: In this paper, we propose a novel method for efficient implementation of a massive Multiple-Input Multiple-Output (massive MIMO) system with Frequency Division Duplexing (FDD) operation. Our main objective is to reduce the large overhead incurred by Downlink (DL) common training and Uplink (UL) feedback needed to obtain channel state information (CSI) at the base station. Our proposed scheme relies on the fact that the underlying angular distribution of a channel vector, also known as the angular scattering function, is a frequency-invariant entity yielding a UL-DL reciprocity and has a limited angular support. We estimate this support from UL CSI and interpolate it to obtain the corresponding angular support of the DL channel. Finally we exploit the estimated support of the DL channel of all the users to design an efficient channel probing and feedback scheme that maximizes the total spectral efficiency of the system. Our method is different from the existing compressed-sensing (CS) based techniques in the literature. Using support information helps reduce the feedback overhead from O(s*log M) in CS techniques to O(s) in our proposed method, with $s$ and $M$ being sparsity order of the channel vectors and the number of base station antennas, respectively. Furthermore, in order to control the channel sparsity and therefore the DL common training and UL feedback overhead, we introduce the novel concept of active channel sparsification. In brief, when the fixed pilot dimension is less than the required amount for reliable channel estimation, we introduce a pre-beamforming matrix that artificially reduces the effective channel dimension of each user to be not larger than the DL pilot dimension, while maximizing both the number of served users and the number of probed angles. We provide numerical experiments to compare our method with the state-of-the-art CS technique.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.