Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Cluster Enumeration Criterion for Unsupervised Learning (1710.07954v3)

Published 22 Oct 2017 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We derive a new Bayesian Information Criterion (BIC) by formulating the problem of estimating the number of clusters in an observed data set as maximization of the posterior probability of the candidate models. Given that some mild assumptions are satisfied, we provide a general BIC expression for a broad class of data distributions. This serves as a starting point when deriving the BIC for specific distributions. Along this line, we provide a closed-form BIC expression for multivariate Gaussian distributed variables. We show that incorporating the data structure of the clustering problem into the derivation of the BIC results in an expression whose penalty term is different from that of the original BIC. We propose a two-step cluster enumeration algorithm. First, a model-based unsupervised learning algorithm partitions the data according to a given set of candidate models. Subsequently, the number of clusters is determined as the one associated with the model for which the proposed BIC is maximal. The performance of the proposed two-step algorithm is tested using synthetic and real data sets.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.