Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Generative Restricted Boltzmann Machine Based Method for High-Dimensional Motion Data Modeling (1710.07831v1)

Published 21 Oct 2017 in cs.CV and cs.LG

Abstract: Many computer vision applications involve modeling complex spatio-temporal patterns in high-dimensional motion data. Recently, restricted Boltzmann machines (RBMs) have been widely used to capture and represent spatial patterns in a single image or temporal patterns in several time slices. To model global dynamics and local spatial interactions, we propose to theoretically extend the conventional RBMs by introducing another term in the energy function to explicitly model the local spatial interactions in the input data. A learning method is then proposed to perform efficient learning for the proposed model. We further introduce a new method for multi-class classification that can effectively estimate the infeasible partition functions of different RBMs such that RBM is treated as a generative model for classification purpose. The improved RBM model is evaluated on two computer vision applications: facial expression recognition and human action recognition. Experimental results on benchmark databases demonstrate the effectiveness of the proposed algorithm.

Citations (50)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.