Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Computational Complexity of the Bipartizing Matching Problem (1710.07741v2)

Published 21 Oct 2017 in cs.DM

Abstract: We study the problem of determining whether a given graph~$G=(V,E)$ admits a matching~$M$ whose removal destroys all odd cycles of~$G$ (or equivalently whether~$G-M$ is bipartite). This problem is equivalent to determine whether~$G$ admits a~$(2,1)$-coloring, which is a~$2$-coloring of~$V(G)$ such that each color class induces a graph of maximum degree at most~$1$. We determine a dichotomy related to the~{\sf NP}-completeness of this problem, where we show that it is~{\sf NP}-complete even for $3$-colorable planar graphs of maximum degree~$4$, while it is known that the problem can be solved in polynomial time for graphs of maximum degree at most~$3$. In addition we present polynomial-time algorithms for some graph classes, including graphs in which every odd cycle is a triangle, graphs of small dominating sets, and~$P_5$-free graphs. Additionally, we show that the problem is fixed parameter tractable when parameterized by the clique-width, which implies polynomial-time solution for many interesting graph classes, such as distance-hereditary, outerplanar, and chordal graphs. Finally, an~$O\left(2{O\left(vc(G)\right)} \cdot n\right)$-time algorithm and a kernel of at most~$2\cdot nd(G)$ vertices are presented, where~$vc(G)$ and~$nd(G)$ are the vertex cover number and the neighborhood diversity of~$G$, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Carlos V. G. C. Lima (6 papers)
  2. Dieter Rautenbach (103 papers)
  3. Uéverton S. Souza (27 papers)
  4. Jayme L. Szwarcfiter (24 papers)

Summary

We haven't generated a summary for this paper yet.