Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BigSparse: High-performance external graph analytics (1710.07736v1)

Published 21 Oct 2017 in cs.DB

Abstract: We present BigSparse, a fully external graph analytics system that picks up where semi-external systems like FlashGraph and X-Stream, which only store vertex data in memory, left off. BigSparse stores both edge and vertex data in an array of SSDs and avoids random updates to the vertex data, by first logging the vertex updates and then sorting the log to sequentialize accesses to the SSDs. This newly introduced sorting overhead is reduced significantly by interleaving sorting with vertex reduction operations. In our experiments on a server with 32GB to 64GB of DRAM, BigSparse outperforms other in-memory and semi-external graph analytics systems for algorithms such as PageRank, BreadthFirst Search, and Betweenness-Centrality for terabyte-size graphs with billions of vertices. BigSparse is capable of highspeed analytics of much larger graphs, on the same machine configuration.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.