Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Local Word Vectors Guiding Keyphrase Extraction (1710.07503v4)

Published 20 Oct 2017 in cs.CL

Abstract: Automated keyphrase extraction is a fundamental textual information processing task concerned with the selection of representative phrases from a document that summarize its content. This work presents a novel unsupervised method for keyphrase extraction, whose main innovation is the use of local word embeddings (in particular GloVe vectors), i.e., embeddings trained from the single document under consideration. We argue that such local representation of words and keyphrases are able to accurately capture their semantics in the context of the document they are part of, and therefore can help in improving keyphrase extraction quality. Empirical results offer evidence that indeed local representations lead to better keyphrase extraction results compared to both embeddings trained on very large third corpora or larger corpora consisting of several documents of the same scientific field and to other state-of-the-art unsupervised keyphrase extraction methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.