Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Characterization of Gradient Dominance and Regularity Conditions for Neural Networks (1710.06910v2)

Published 18 Oct 2017 in stat.ML, cs.LG, and math.OC

Abstract: The past decade has witnessed a successful application of deep learning to solving many challenging problems in machine learning and artificial intelligence. However, the loss functions of deep neural networks (especially nonlinear networks) are still far from being well understood from a theoretical aspect. In this paper, we enrich the current understanding of the landscape of the square loss functions for three types of neural networks. Specifically, when the parameter matrices are square, we provide an explicit characterization of the global minimizers for linear networks, linear residual networks, and nonlinear networks with one hidden layer. Then, we establish two quadratic types of landscape properties for the square loss of these neural networks, i.e., the gradient dominance condition within the neighborhood of their full rank global minimizers, and the regularity condition along certain directions and within the neighborhood of their global minimizers. These two landscape properties are desirable for the optimization around the global minimizers of the loss function for these neural networks.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)