Papers
Topics
Authors
Recent
2000 character limit reached

Weighted Tensor Decomposition for Learning Latent Variables with Partial Data (1710.06818v1)

Published 18 Oct 2017 in stat.ML

Abstract: Tensor decomposition methods are popular tools for learning latent variables given only lower-order moments of the data. However, the standard assumption is that we have sufficient data to estimate these moments to high accuracy. In this work, we consider the case in which certain dimensions of the data are not always observed---common in applied settings, where not all measurements may be taken for all observations---resulting in moment estimates of varying quality. We derive a weighted tensor decomposition approach that is computationally as efficient as the non-weighted approach, and demonstrate that it outperforms methods that do not appropriately leverage these less-observed dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.