Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Function Norms and Regularization in Deep Networks (1710.06703v2)

Published 18 Oct 2017 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) have become increasingly important due to their excellent empirical performance on a wide range of problems. However, regularization is generally achieved by indirect means, largely due to the complex set of functions defined by a network and the difficulty in measuring function complexity. There exists no method in the literature for additive regularization based on a norm of the function, as is classically considered in statistical learning theory. In this work, we propose sampling-based approximations to weighted function norms as regularizers for deep neural networks. We provide, to the best of our knowledge, the first proof in the literature of the NP-hardness of computing function norms of DNNs, motivating the necessity of an approximate approach. We then derive a generalization bound for functions trained with weighted norms and prove that a natural stochastic optimization strategy minimizes the bound. Finally, we empirically validate the improved performance of the proposed regularization strategies for both convex function sets as well as DNNs on real-world classification and image segmentation tasks demonstrating improved performance over weight decay, dropout, and batch normalization. Source code will be released at the time of publication.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.