Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Effects of Memory Replay in Reinforcement Learning (1710.06574v1)

Published 18 Oct 2017 in cs.AI, cs.LG, and stat.ML

Abstract: Experience replay is a key technique behind many recent advances in deep reinforcement learning. Allowing the agent to learn from earlier memories can speed up learning and break undesirable temporal correlations. Despite its wide-spread application, very little is understood about the properties of experience replay. How does the amount of memory kept affect learning dynamics? Does it help to prioritize certain experiences? In this paper, we address these questions by formulating a dynamical systems ODE model of Q-learning with experience replay. We derive analytic solutions of the ODE for a simple setting. We show that even in this very simple setting, the amount of memory kept can substantially affect the agent's performance. Too much or too little memory both slow down learning. Moreover, we characterize regimes where prioritized replay harms the agent's learning. We show that our analytic solutions have excellent agreement with experiments. Finally, we propose a simple algorithm for adaptively changing the memory buffer size which achieves consistently good empirical performance.

Citations (106)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)