Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sistema de Navegação Autônomo Baseado em Visão Computacional (1710.06518v1)

Published 17 Oct 2017 in cs.RO and cs.CV

Abstract: Autonomous robots are used as the tool to solve many kinds of problems, such as environmental mapping and monitoring. Either for adverse conditions related to the human presence or even for the need to reduce costs, it is certain that many efforts have been made to develop robots with an increasingly high level of autonomy. They must be capable of locomotion through dynamic environments, without human operators or assistant systems' help. It is noted, thus, that the form of perception and modeling of the environment becomes significantly relevant to navigation. Among the main sensing methods are those based on vision. Through this, it is possible to create highly-detailed models about the environment, since many characteristics can be measured, such as texture, color, and illumination. However, the most accurate vision-based navigation techniques are computationally expensive to run on low-cost mobile platforms. Therefore, the goal of this work was to develop a low-cost robot, controlled by a Raspberry Pi, whose navigation system is based on vision. For this purpose, the strategy used consisted in identifying obstacles via optical flow pattern recognition. Through this signal, it is possible to infer the relative displacement between the robot and other elements in the environment. Its estimation was done using the Lucas-Kanade algorithm, which can be executed by the Raspberry Pi without harming its performance. Finally, an SVM based classifier was used to identify patterns of this signal associated with obstacles movement. The developed system was evaluated considering its execution over an optical flow pattern dataset extracted from a real navigation environment. In the end, it was verified that the processing frequency of the system was superior to the others. Furthermore, its accuracy and acquisition cost were, respectively, higher and lower than most of the cited works.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube