Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Computation of gray-level co-occurrence matrix based on CUDA and its optimization (1710.06189v1)

Published 17 Oct 2017 in cs.PF

Abstract: As in various fields like scientific research and industrial application, the computation time optimization is becoming a task that is of increasing importance because of its highly parallel architecture. The graphics processing unit is regarded as a powerful engine for application programs that demand fairly high computation capabilities. Based on this, an algorithm was introduced in this paper to optimize the method used to compute the gray-level co-occurrence matrix (GLCM) of an image, and strategies (e.g., "copying", "image partitioning", etc.) were proposed to optimize the parallel algorithm. Results indicate that without losing the computational accuracy, the speed-up ratio of the GLCM computation of images with different resolutions by GPU by the use of CUDA was 50 times faster than that of the GLCM computation by CPU, which manifested significantly improved performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.