Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Combining LiDAR Space Clustering and Convolutional Neural Networks for Pedestrian Detection (1710.06160v1)

Published 17 Oct 2017 in cs.CV

Abstract: Pedestrian detection is an important component for safety of autonomous vehicles, as well as for traffic and street surveillance. There are extensive benchmarks on this topic and it has been shown to be a challenging problem when applied on real use-case scenarios. In purely image-based pedestrian detection approaches, the state-of-the-art results have been achieved with convolutional neural networks (CNN) and surprisingly few detection frameworks have been built upon multi-cue approaches. In this work, we develop a new pedestrian detector for autonomous vehicles that exploits LiDAR data, in addition to visual information. In the proposed approach, LiDAR data is utilized to generate region proposals by processing the three dimensional point cloud that it provides. These candidate regions are then further processed by a state-of-the-art CNN classifier that we have fine-tuned for pedestrian detection. We have extensively evaluated the proposed detection process on the KITTI dataset. The experimental results show that the proposed LiDAR space clustering approach provides a very efficient way of generating region proposals leading to higher recall rates and fewer misses for pedestrian detection. This indicates that LiDAR data can provide auxiliary information for CNN-based approaches.

Citations (48)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.